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For N particles (N>2), by means of a spherical harmonic expansion of 
Silverstone and Moats, a 3N-dimensional cluster may be reduced to 2N+ 1 
trivial integrals and N - 1  interesting integrals. For hard spheres, the N - 1  
interesting integrals are products of polynomials integrated between binomial 
bounds. With simple clusters, closed forms are obtained; for more complex 
clusters, infinite series in ! (of Y/,,) appear. It is here shown for representative 
cases that these series converge exponentially rapidly, the leading pair of terms 
accounting for all but a few tenths of a percent of the total cluster integral. 
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1. I N T R O D U C T I O N  

In a previous paper, <~ it was demonstrated that a specific spherical har- 
monic t ransformation allows one to reduce an N-particle cluster integral 
from 3N to N -  1 nontrivial integrations. In some cases the reduction gives 
rise to infinite series rather than simple closed forms. The series are exact, 
in the sense that the full,infinite series gives the complete function that  it 
represents, rather than being an asymptot ic  approximant .  This note reports 
the use of  symbolic integration methods to test the pract ical  ( though not  
absolute) convergence of several of these infinite series. To study the practi- 
cal convergence of a series, one determines if evaluation of a reasonable 
number  of low-order  terms gives a good  approximat ion of the exact value, 
thereby establishing the utility of the technique for evaluating higher-order 
virial coefficients. The expansion methods should also be effective for 
evaluating higher-order ~2~ pseudovirial coefficients that  arise naturally in 
concentra t ion expansions of  solution t ransport  properties. 
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The pressure of a neutral gas has an expansion 

P V  
k ,,;=n(lj + B 2 p + B 3 p 2 +  . . . )  ( t )  

n being the number of particles in the system, V being the system volume, 
p = n/V, and the B N being virial coefficients. For gases whose molecules 
interact via an orientation-independent pair potential Uij, each Bu may be 
written t4) as a sum of cluster diagrams. A typical N-particle cluster diagram 
is an integral, over the positions of N particles, of a product of Mayer 
f-functions f v = e x p ( - f l U o .  ). Therefore BN can be written as a series of 
3N-dimensional integrals. 

For  N >  2, translational and rotational symmetry allows reduction of 
B N from 3N to 3 N - 6  dimensions. In a previous paper, (j~ 1 demonstrated 
that a transformation, introduced by Silverstone and Moats t3~ based on 
work of Sharma ~5~ for many-electron quantum mechanics, serves to reduce 
an arbitrary N-particle cluster integral from 3N dimensions to: (i) three 
entirely trivial integrals over the location of a first particle, (ii) 2 N - 2  
nearly trivial integrals over products of spherical harmonics Y~,,(f2,) (the 
f2 i being the angular coordinates of particles 2 ..... i ..... N as determined with 
the origin at particle 1), and (iii) N - 1  significant integrals over scalar 
distances r,s, t .... from the first particle to each of the other particles. For 
hard spheres, the integrands are conventional polynomials, while the limits 
of integration are monomials or binomials in r, s, t, e.g., 0, r, 1 - s .  

With relatively simple cluster diagrams (ref. 1 provides a more com~ 
plete discussion), application of the Silverstone-Moats transformation 
gives simple closed forms which may be evaluated analytically. With more 
complex diagrams, one obtains from the Silverstone-Moats transformation 
an infinite series in /, / being the principal index of a spherical harmonic 
Yt,,(t2). Infinite series arising from spherical harmonics are often described 
as "angular momentum" expansions (though the problem at hand is purely 
classical, and involves only position coordinates of the molecules). Angular 
momentum expansions are often viewed as being slow to converge. The 
objective here is to show that spherical harmonic expansions based on 
the Silverstone-Moats transform converge relatively rapidly, at least in 
representative cases. 

2. GENERAL RESULTS 

Consider a set of points r l ,  !" 2 ..... r i ..... separated by vectors r 0 = r i -  rj. 
Silverstone and Moats ~3) expand a function f ( r o ) = - f ( [ r e - r j l  ) in terms 
of the scalar distances rl; and r u from 1 to i and j, and the angular 
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coordinates of i and j, as measured from point 1. Specifically, F ( r ) =  
f(r) YLM(O, qk) may be expanded 

F(r-R)= ~ /+c 
I=O,l+L+2even 2 = ] l - - L ]  

/ 

X Z C2LMlm Y2, M-m(OR, ~R) Ylm(Or, ~r) ( 2 )  
m= -I 

C~LM,m= i Ct~ Y~*~,-m(O) r~'..(O) YL~t(D) (3) 

vlaL(r,R) =2~(-l)'(c+l+a)/z ~ ~ Dla~r~h ( R )  2~-1- I 
a = 0  b = O  

x [ - f(r') dr' (4) 
o I r RI 

Dt~L.h = [(2a)!! (2a -- 2L - 1 )!t (2b - 2 l -  1 )!! (L + l + 2 - 2a - 2b)!! 

x (2b)!! (L + l -  2 - 2 a -  2b - 1 )!!] -~ (5) 

(2N)!! =2NN! (6) 

( 2 N -  I)!! = (2N)!/(2N)!! (7) 

( - 2 N -  11!! = ( - 1 )N/(2N-- 1)!! (8) 

Here OR, q~R are the angular parts of R in spherical polar coordinates. 
Following Edmonds, (6) the phase of the spherical harmonics is Y~,,(0, ~b) = 
( - t ) "  Y,, .,,(0,~b). Equation(3)  is essentially a 3-jsymbol; to aid the 
reader in tracing the derivation of Eqs. (3)-(8), the notation C;,c.~,,,, of 
ref. 3 has been retained here. Equation (4) looks potentially tricky near 
R--,0. For spherical atoms, the / = 0  case is well behaved; f o r / > 0 ,  one 
finds the well-converged behavior v,o(r, R) --+ 0 as R ~ 0. 

A typical N-particle cluster integral has the form ~dr~ . . .dr~. . .drN 
[...product o f f  functions...], individual f functions depending on pairs of 
particle coordinates via f,.i---f(r~-rj). By applying the transformation of 
Eqs. (2)-(8) to a l l f  0. in which neither i n o r j  is unity, one obtains products 
of the v,~L(rt~, r~ i) and spherical harmonics, all spherical harmonics 
being centered on particle 1. Angular integrals over products of spherical 
harmonics are fundamentally trivial, but serve to constrain the relative 
values of their indices. 

For hard spheres, L = M =  0, while l =  2. A Mayer f-function has an 
expansion 

/ 

f(ro) = ~ VHo(r,i, r,.,) Z Ctoo,m r,. ,,(O,i, ~,i) V,m(O,i, qk,j) (9) 
1 = 0  m =  l 
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where r~i= Ir~il, other symbols being defined in Eqs. (2)-(8). Note that the 
f(r') in Eq. (4) is related to the Mayer f-function b y . f i r , ) = f ( r ' )  Yoo(g2). 
The previous work t~) used this expansion to evaluate the three- and four- 
particle ring diagrams B 3 and D4, as well as the four-particle, five-f cluster 
Ds, getting complete agreement with previous results. For the fully- 
connected four-point cluster 06, the spherical harmonic expansion gives 
an infinite series, the first term of which was previously evaluated. 

3 .  E X E M P L A R Y  S E R I E S  

This section treats the evaluation of two heavily-connected clusters, 
namely D6 (the fully connected four-particle cluster) and E~ (a five-particle, 
eight-link cluster). Consider first D6. Placing the first particle at the origin 
and denoting the vectors from the first particle to the second, third, 
fourth ..... particles by r, s, t, u ..... one obtains for D6. 

oo= M dr I ds at s;.l;.t;.t;.,.i:,,./;, 

where/i, links the first and second particles, J;,,.-f(Ir- sJ) links the second 
and third particles, etc. M is the multiplicity: the number of times the 
diagram contributes to B4. For 96, one has M = 1. The spherical harmonic 
transformation eliminates l-functions not involving the first particle, so that 

D6~-fdrdldtfrfsf, ~, ~ V,to(r,s) vrro(S,t)vr 'r 'o(r, ' )  
I,l',1"=0 m,m',m" 

X Clool m Ci,ool,m,Cl,,OOl,,m,, Ytm(f2,) Y/,.(12s) Y~,.,,(O.,.) 
x Yt,m,(f2,) Y~,m,,(f2,) Yt,,m,,(12,) (11) 

In the above equation, the triple sum on l, l', l" is collapsed to a single 
sum by the angular integrals. Namely, applying the orthogonality equation 
S d12. Yt,.(f2r) Yr-,,,'(12,) = ( - 1)" 6.,,5,,,,,,, (and similarly for S d(2~, ~ dQ,) 
forces l = l' = l" and m = m' = m". For hard spheres, f(r) = 0 (r > 1 ) and 
f i r ) =  - 1  ( r<  1), Noting C~ootm=(-l)m/(4~Z) 1/2, we may define D6(l ) by 

- -  co 
D6  --)--~,'= 0 O 6 ( / ) ,  w i t h  

I l l 2 l +  1 
D 6 ( / ) : - f o  dr fods fo dtr2s2t2V.o(r,s) Vt to(S, t )V.o(r , t )~  (12) 

The factors Vuo(r, s) of the integral are all simple polynomials, whose 
length increases with increasing /. While evaluation of the resulting 
integrals by hand would be somewhat tedious, modern computer-algebraic 
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programs make the integrations straightforward. Using Mathematica 
(386/Weitek Version 1.1a.1), D6(/) was obtained for l=0 ,  1,..., 6; results 
appear in Table I, column 2. Since the fourth virial coefficient B4, and the 
other doubly-connected hard-sphere cluster integrals D 4 and D5 which con- 
tribute to B4,  a r e  known exactly, D 6 is analytically determined; its value 
0 6 ( o 0  ) is the final line of Table I. The right-hand column of Table I gives 

0 6 ( ~  - -  ~'~= o O 6 ( i )  
z~ - ( 1 3 )  

D6(c(3 ) 

which is the fractional error in estimating D 6 by truncating the spherical 
harmonic expansion at the indicated value of l. The l=  0 and l=  1 terms 
jointly get D 6 within 0.1%. 

It should be emphasized that the numbers in the tables largely derive 
from analytic calculations, conversion from exact rational numbers to 
decimal approximations (initially performed to 20 significant figures) 
generally being made as the final step of the computation. For example, 

3 21429 ~ 0.2391629 
D6( 1 ) = 89600 

In two cases, the outermost integral could not be performed in a simple 
way by the available computer program; in these cases, the final integration 
was performed numerically to a higher precision than indicated here. 
Roundoff errors in quoting the D6(l ) are therefore not significant. 

A slight variation on the above method gives the integral Es, 

E. = M f dr I ds f dt f du Jr./:,./J,J>.,'f, f,,,f,',, ,14) 

Table I. E v a l u a t i o n  o f  Ds ( / )  [Eq.  ( 12 ) ]  for Various I, 
Together with the Fractional Error in Computing D 6 

Attendant to Terminating the Spherical Harmonic 
Expansion at the C u r r e n t  I 

J iJ i i  I i I I 

1 D6[I ] zl 

0 1.025669 0.1904 
1 0.239163 0.001635 
2 0.004848 -- 0.002192 
3 - 0.001687 - 0.000859 
4 --0.001186 0.000077 
5 - 0.000092 0.000150 
6 0.000119 0.000056 

1.266904 0 
II 
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the value of M being determined by the cluster, so M = 30. Applying the 
spherical harmonic transformation 

E8 = 30 j dr ds dt du f r  f,,, f ,  f ,  

• Y, V,,o(r, s) t) v,,,,,,oit, u) 
1,1',1",1"=0 m.m' ,m",m" 

x Ctoot,,, Ci,oot,,,, Ct "oot ",,," Ct,,,ooz,,,m ,,, Ytm (g-2r) Yt,,, ( I2,,. ) 

x Y*,,,(t2,.) Y,,,,,(t2,) Y*,,,,,(t2,) Y,,,m,,(t2,,) Y~,,,,,,,,(t2,) Y,,,,,~,,,(t2,,) (15) 

The angular integrals again constrain the l's and re's, namely l = m = O 
and l ' =  l "=  l", m ' =  m " =  m ' .  Using identities to eliminate the Ct~, , ,  and 
introducing E8(1) via E 8 = ~ L  o Es(l), Eq. (15) gives 

Es(/) = - 3 0  f dr ds dt du r2s2t2u2vo~(r, s} 
Jo ) 

2/+ 1 
x v,lo(s, t) v,o(t, u) V,o(S, u) (4rc)2 (16) 

Table I1 presents Es(I) for l =  0 ..... 7. The exact value of this integrai 
(39.89421) is taken from Kilpatrick. t7~ From the fractional error in the 
truncated series (A, right-hand column), the series for E~ converges slightly 
more rapidly than does the series for D6, Table I. Katsura and Abe ~8~ have 
estimated E8 by means of series expansions and a Monte Carlo expansion. 
Their series expansion, terminated at fourth order, does not agree with the 

Table  II. Evaluat ion of  Ee(I) [Eq. ( 1 6 ) ]  for  Var ious I, Toge ther  w i t h  the  
Total  Cont r ibu t ion  to  E e of  All  Terms through  to  the  Current  / a 

l E s [ / ]  To ta l  d 

0 33.402736 33.4027 0.1627 

1 6.455151 39.8579 9.10 x 10 -4 

2 0.107285 39.9652 -- 1.78 x t0  ~ 

3 - 0 . 0 4 6 0 4 4  39.9192 - 6 . 2 6 x  I0 4 

4 - 0,027167 39.8920 5.54 x 10 - 5 

5 - 0 . 002128  39.8899 1.08 • 10 -4 

6 0.002800 39.8927 3.78 x 10 5 

7 0.001919 39.8946 - 9 . 7 8  x 10 -6 

oo 39.894210 0 
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expansion used here to the fourth order. While Katsura and Abe's series 
methods are related to those used here, the two methods are clearly not 
identical. 

4. CONCLUSIONS 

The primary conclusion here is that the Silverstone-Moats spherical 
harmonic transformation (3) leads to series which are relatively rapidly con- 
vergent. Both for D 6 and E8, the first two terms of the expansion account 
for all but a fraction of a percent of the infinite series. Use of the transfor- 
mation allows a facile, primarily algebraic, attack on functions which 
elsewise could only be evaluated by numerical means. Even if more com- 
plicated diagrams led to forms which could not be handled analytically, so 
that the final integrations needed numerical or Monte Carlo integration, 
effecting a substantial reduction in the dimensionality of the integration 

u o o u o  ~1 
t o_oo~ A2 

\ t  

1 2 5 4 5 6 

Z 

Fig. 1. Magnitude of the fractional error/1 in the spherical harmonic expansions for cluster 
diagrams as a function of the highest order 1 of included terms. A~ is the error in D6; /I 2 is 
the error in Es. 
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--for E8, from 15 to 4 dimensions--may under some conditions improve 
both speed and accuracy of integration. 

Figure 1 illustrates the convergence of the series for D6 and Es, plot- 
ting log(lA[) against l. Evaluation of t h e / = 0  and l=  1 terms accounts for 
most of the value of each integral. [AI falls rapidly with increasing l. The 
solid lines, fit at large l to the outer envelope of A's nonmonotonic i 
dependence, correspond to iog(lA[) = a -  bl. For D6, one finds a = -1.94, 
b = -0.411, while for E8 one has a = -1.873, b = -0.394. The error in the 
fit thus improves tenfold if l is increased by 2�89 

Series treatments of virial coefficients of hard spheres have previously 
been used by Katsura, Kilpatrick, and collaboratorsJ ~ ~ The spherical 
harmonic transformation implicit in Eqs. (2)-(8) differs the series used pre- 
viously in several respects. The most important is that the calculation of 
ref. 8 is a beautiful mathematical tour-de-force, a variety of clever methods 
being used to perform the computation. The method shown here hides the 
clever mathematics in the derivation of Eqs. (2)-(8), which for the user are 
a given. To apply the Silverstone-Moats transformation ~to hard-sphere 
systems, as demonstrated here, the user only needs to integrate poly- 
nomials and products of spherical harmonics. 

There are expansions alternative to the Mayer graphs; Kratky, ~2~ 
proceeding from earlier partial results of Lesk, ~13~ introduced an expansion 
for the B N in terms of overlap graphs. Also notable are the Ree Hoover 
graphs, 1141, in which some J)i are replaced with terms g i i = f #  + 1. By com- 
bining Mayer graphs with proper multiplicities into Ree Hoover graphs, 
the number of distinct graphs needed in the evaluation of a given virial 
coefficient may be greatly reduced. For example, the diagrams 0 4 and D5 
(each at multiplicity 1) combine as D 4 + D 5 = ~ f~fr .~f , , f t  g,'" Both D4 and 
D 5 can be evaluated with the expansion procedure treated here, so the 
corresponding Ree-Hoover graph (obtained by summing the polynomials 
for  0 4 and Ds) .can also be evaluated. It is not necessary to generate 0 4 

and D5 separately. Since g ~ = f s +  1, gs has a well-defined spherical har- 
monic expansion, differing from fs in the value of Vooo. Substitution of the 
spherical harmonic expansion for g~ into Ree-Hoover graphs allows their 
direct evaluation. 
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